Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrality and Gauge Dependence of Hennings TQFTs (1305.7498v3)

Published 31 May 2013 in math.GT and math.QA

Abstract: We provide a general construction of integral TQFTs over a general commutative ring, $\mathbf{k}$, starting from a finite Hopf algebra over $\mathbf{k}$ which is Frobenius and double balanced. These TQFTs specialize to the Hennings invariants of the respective doubles on closed 3-manifolds. We show the construction applies to index 2 extensions of the Borel parts of Lusztig's small quantum groups for all simple Lie types, yielding integral TQFTs over the cyclotoic integers for surfaces with boundary. We further establish and compute isomorphisms of TQFT functors constructed from Hopf algebras that are related by a strict gauge transformation in the sense of Drinfeld. Formulas for the natural isomorphisms are given in terms of the gauge twist element. These results are combined and applied to show that the Hennings invariant associated to quantum-$sl_2$ takes values in the cyclotomic integers. Using prior results of Chen et al we infer integrality also of the Witten-Reshetikhin-Turaev $SO(3)$ invariant for rational homology spheres. As opposed to most other approaches the methods described in this article do not invoke calculations of skeins, knots polynomials, or representation theory, but follow a combinatorial construction that uses only the elements and operations of the underlying Hopf algebras.

Summary

We haven't generated a summary for this paper yet.