Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning of Molecular Electronic Properties in Chemical Compound Space (1305.7074v1)

Published 30 May 2013 in physics.chem-ph

Abstract: The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a ML model, trained on a data base of \textit{ab initio} calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to \emph{ab initio} methods, \emph{i.e.} nuclear charges and Cartesian coordinates of all atoms. For small organic molecules the accuracy of such a "Quantum Machine" is similar, and sometimes superior, to modern quantum-chemical methods---at negligible computational cost.

Summary

We haven't generated a summary for this paper yet.