Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incentive Mechanisms for Internet Congestion Management: Fixed-Budget Rebate versus Time-of-Day Pricing (1305.6971v1)

Published 29 May 2013 in cs.NI and cs.GT

Abstract: Mobile data traffic has been steadily rising in the past years. This has generated a significant interest in the deployment of incentive mechanisms to reduce peak-time congestion. Typically, the design of these mechanisms requires information about user demand and sensitivity to prices. Such information is naturally imperfect. In this paper, we propose a \emph{fixed-budget rebate mechanism} that gives each user a reward proportional to his percentage contribution to the aggregate reduction in peak time demand. For comparison, we also study a time-of-day pricing mechanism that gives each user a fixed reward per unit reduction of his peak-time demand. To evaluate the two mechanisms, we introduce a game-theoretic model that captures the \emph{public good} nature of decongestion. For each mechanism, we demonstrate that the socially optimal level of decongestion is achievable for a specific choice of the mechanism's parameter. We then investigate how imperfect information about user demand affects the mechanisms' effectiveness. From our results, the fixed-budget rebate pricing is more robust when the users' sensitivity to congestion is "sufficiently" convex. This feature of the fixed-budget rebate mechanism is attractive for many situations of interest and is driven by its closed-loop property, i.e., the unit reward decreases as the peak-time demand decreases.

Citations (34)

Summary

We haven't generated a summary for this paper yet.