Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limit of the Wulff Crystal when approaching criticality for site percolation on the triangular lattice (1305.6034v1)

Published 26 May 2013 in math.PR

Abstract: The understanding of site percolation on the triangular lattice progressed greatly in the last decade. Smirnov proved conformal invariance of critical percolation, thus paving the way for the construction of its scaling limit. Recently, the scaling limit of near-critical percolation was also constructed by Garban, Pete and Schramm. The aim of this very modest contribution is to explain how these results imply the convergence, as p tends to p_c, of the Wulff crystal to a Euclidean disk. The main ingredient of the proof is the rotational invariance of the scaling limit of near-critical percolation proved by these three mathematicians.

Summary

We haven't generated a summary for this paper yet.