Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Theoretic Characterisations of Description Logics (1305.5820v1)

Published 24 May 2013 in cs.LO and math.LO

Abstract: This thesis studies the model theoretic properties of the Description Logics (DLs) ALC, ALCI, ALCQ, as well as ALCO, ALCQO, ALCQIO and EL. TBoxes of ALC, ALCI and ALCQ are characterised as fragments of FO which are invariant under global bisimulation and disjoint unions. The logics ALCO, ALCQO and ALCQIO, which incorporate individuals, are characterised w.r.t. to the class K of all interpretations which interpret individuals as singleton sets. The characterisations for TBoxes of ALCO and ALCQO both require additionally that an FO-sentence is, under certain circumstances, preserved under forward generated subinterpretations. FO-sentences equivalent to ALCQIO-TBoxes, are - due to ALCQIO's inverse roles - characterised similarly but are required to be preserved under generated subinterpretations. EL as sub-boolean DL is characterised on concept level as the FO-fragment which is preserved under simulation and preserved under direct products. Equally valid is the characterisation by being preserved under simulation and having minimal models. For EL-TBoxes, a global version of simulation was not sufficient but FO-sentences of EL-TBoxes are invariant under global equi-simulation, disjoint unions and direct products. For each of these description logics, the characteristic concepts are explicated and the characterisation is accompanied by an investigation under which notion of saturation the logic in hand enjoys the Hennessy-and-Milner-Property. As application of the results we determine the minimal globally bisimilar companion w.r.t. ALCQO-bisimulation and introduce the L1-to-L2-rewritability problem for TBoxes, where L1 and L2 are (description) logics. The latter is the problem to decide whether or not an L1-TBox can be equivalently expressed as L2-TBox. We give algorithms which decide ALCI-to-ALC-rewritability and ALC-to-EL-rewritability. (See also abstract in the thesis.)

Citations (11)

Summary

We haven't generated a summary for this paper yet.