Exotic coactions (1305.5489v2)
Abstract: If a locally compact group G acts on a C*-algebra B, we have both full and reduced crossed products, and each has a coaction of G. We investigate "exotic" coactions in between, that are determined by certain ideals E of the Fourier-Stieltjes algebra B(G) -- an approach that is inspired by recent work of Brown and Guentner on new C*-group algebra completions. We actually carry out the bulk of our investigation in the general context of coactions on a C*-algebra A. Buss and Echterhoff have shown that not every coaction comes from one of these ideals, but nevertheless the ideals do generate a wide array of exotic coactions. Coactions determined by these ideals E satisfy a certain "E-crossed product duality", intermediate between full and reduced duality. We give partial results concerning exotic coactions, with the ultimate goal being a classification of which coactions are determined by ideals of B(G).