Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Supervised Neural Autoregressive Topic Model for Simultaneous Image Classification and Annotation (1305.5306v1)

Published 23 May 2013 in cs.CV, cs.LG, and stat.ML

Abstract: Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to perform scene recognition and annotation. Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for document modeling. In this work, we show how to successfully apply and extend this model to the context of visual scene modeling. Specifically, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the hidden topic features by incorporating label information into the training objective of the model. We also describe how to leverage information about the spatial position of the visual words and how to embed additional image annotations, so as to simultaneously perform image classification and annotation. We test our model on the Scene15, LabelMe and UIUC-Sports datasets and show that it compares favorably to other topic models such as the supervised variant of LDA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yin Zheng (23 papers)
  2. Yu-Jin Zhang (10 papers)
  3. Hugo Larochelle (87 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.