Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Weingarten transformations of hyperbolic nets (1305.4783v1)

Published 21 May 2013 in math.DG

Abstract: Weingarten transformations which, by definition, preserve the asymptotic lines on smooth surfaces have been studied extensively in classical differential geometry and also play an important role in connection with the modern geometric theory of integrable systems. Their natural discrete analogues have been investigated in great detail in the area of (integrable) discrete differential geometry and can be traced back at least to the early 1950s. Here, we propose a canonical analogue of (discrete) Weingarten transformations for hyperbolic nets, that is, C1-surfaces which constitute hybrids of smooth and discrete surfaces "parametrized" in terms of asymptotic coordinates. We prove the existence of Weingarten pairs and analyse their geometric and algebraic properties.

Summary

We haven't generated a summary for this paper yet.