Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-sum repeated games: Counterexamples to the existence of the asymptotic value and the conjecture $\operatorname{maxmin}=\operatorname{lim}v_n$ (1305.4778v4)

Published 21 May 2013 in math.OC and cs.LG

Abstract: Mertens [In Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986) (1987) 1528-1577 Amer. Math. Soc.] proposed two general conjectures about repeated games: the first one is that, in any two-person zero-sum repeated game, the asymptotic value exists, and the second one is that, when Player 1 is more informed than Player 2, in the long run Player 1 is able to guarantee the asymptotic value. We disprove these two long-standing conjectures by providing an example of a zero-sum repeated game with public signals and perfect observation of the actions, where the value of the $\lambda$-discounted game does not converge when $\lambda$ goes to 0. The aforementioned example involves seven states, two actions and two signals for each player. Remarkably, players observe the payoffs, and play in turn.

Citations (51)

Summary

We haven't generated a summary for this paper yet.