Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustered planarity testing revisited (1305.4519v5)

Published 20 May 2013 in cs.CG, cs.DM, and math.CO

Abstract: The Hanani--Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this result to clustered graphs with two disjoint clusters, and show that a straightforward extension to flat clustered graphs with three or more disjoint clusters is not possible. For general clustered graphs we show a variant of the Hanani--Tutte theorem in the case when each cluster induces a connected subgraph. Di Battista and Frati proved that clustered planarity of embedded clustered graphs whose every face is incident with at most five vertices can be tested in polynomial time. We give a new and short proof of this result, using the matroid intersection algorithm.

Citations (29)

Summary

We haven't generated a summary for this paper yet.