Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties of modified Riemannian extensions (1305.4478v2)

Published 20 May 2013 in math.DG

Abstract: Let $M$ be an $n-$dimensional differentiable manifold with a symmetric connection $\nabla $ and $T{\ast}M$ be its cotangent bundle. In this paper, we study some properties of the modified Riemannian extension $% \widetilde{g}{\nabla,c}$ on $T{\ast}M$ defined by means of a symmetric $% (0,2)$-tensor field $c$ on $M.$ We get the conditions under which $T{\ast}M $ endowed with the horizontal lift ${H}J$ of an almost complex structure $J$ and with the metric $\widetilde{g}{\nabla,c}$ is a K\"{a}hler-Norden manifold. Also curvature properties of the Levi-Civita connection and another metric connection of the metric $\widetilde{g}_{\nabla,c}$ are presented.

Summary

We haven't generated a summary for this paper yet.