Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

False Discovery Rate Control under Archimedean Copula (1305.3897v3)

Published 16 May 2013 in math.ST and stat.TH

Abstract: We are considered with the false discovery rate (FDR) of the linear step-up test $\varphi{LSU}$ considered by Benjamini and Hochberg (1995). It is well known that $\varphi{LSU}$ controls the FDR at level $m_0 q / m$ if the joint distribution of $p$-values is multivariate totally positive of order 2. In this, $m$ denotes the total number of hypotheses, $m_0$ the number of true null hypotheses, and $q$ the nominal FDR level. Under the assumption of an Archimedean $p$-value copula with completely monotone generator, we derive a sharper upper bound for the FDR of $\varphi{LSU}$ as well as a non-trivial lower bound. Application of the sharper upper bound to parametric subclasses of Archimedean $p$-value copulae allows us to increase the power of $\varphi{LSU}$ by pre-estimating the copula parameter and adjusting $q$. Based on the lower bound, a sufficient condition is obtained under which the FDR of $\varphi{LSU}$ is exactly equal to $m_0 q / m$, as in the case of stochastically independent $p$-values. Finally, we deal with high-dimensional multiple test problems with exchangeable test statistics by drawing a connection between infinite sequences of exchangeable $p$-values and Archimedean copulae with completely monotone generators. Our theoretical results are applied to important copula families, including Clayton copulae and Gumbel copulae.

Summary

We haven't generated a summary for this paper yet.