Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periods of second kind differentials of (n,s)-curves (1305.3201v3)

Published 14 May 2013 in math.CV, math-ph, math.AG, and math.MP

Abstract: For elliptic curves, expressions for the periods of elliptic integrals of the second kind in terms of theta-constants, have been known since the middle of the 19th century. In this paper we consider the problem of generalizing these results to curves of higher genera, in particular to a special class of algebraic curves, the so-called $(n,s)$-curves. It is shown that the representations required can be obtained by the comparison of two equivalent expressions for the projective connection, one due to Fay-Wirtinger and the other from Klein-Weierstrass. As a principle example, we consider the case of the genus two hyperelliptic curve, and a number of new Thomae and Rosenhain-type formulae are obtained. We anticipate that our analysis for the genus two curve can be extended to higher genera hyperelliptic curves, as well as to other classes of $(n,s)$ non-hyperelliptic curves.

Summary

We haven't generated a summary for this paper yet.