Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions (1305.2505v1)

Published 11 May 2013 in cs.LG and stat.ML

Abstract: In this paper, we study the generalization properties of online learning based stochastic methods for supervised learning problems where the loss function is dependent on more than one training sample (e.g., metric learning, ranking). We present a generic decoupling technique that enables us to provide Rademacher complexity-based generalization error bounds. Our bounds are in general tighter than those obtained by Wang et al (COLT 2012) for the same problem. Using our decoupling technique, we are further able to obtain fast convergence rates for strongly convex pairwise loss functions. We are also able to analyze a class of memory efficient online learning algorithms for pairwise learning problems that use only a bounded subset of past training samples to update the hypothesis at each step. Finally, in order to complement our generalization bounds, we propose a novel memory efficient online learning algorithm for higher order learning problems with bounded regret guarantees.

Citations (110)

Summary

We haven't generated a summary for this paper yet.