Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unique Perfect Phylogeny Characterizations via Uniquely Representable Chordal Graphs (1305.1375v2)

Published 7 May 2013 in cs.DM, cs.CE, math.CO, and q-bio.QM

Abstract: The perfect phylogeny problem is a classic problem in computational biology, where we seek an unrooted phylogeny that is compatible with a set of qualitative characters. Such a tree exists precisely when an intersection graph associated with the character set, called the partition intersection graph, can be triangulated using a restricted set of fill edges. Semple and Steel used the partition intersection graph to characterize when a character set has a unique perfect phylogeny. Bordewich, Huber, and Semple showed how to use the partition intersection graph to find a maximum compatible set of characters. In this paper, we build on these results, characterizing when a unique perfect phylogeny exists for a subset of partial characters. Our characterization is stated in terms of minimal triangulations of the partition intersection graph that are uniquely representable, also known as ur-chordal graphs. Our characterization is motivated by the structure of ur-chordal graphs, and the fact that the block structure of minimal triangulations is mirrored in the graph that has been triangulated.

Citations (1)

Summary

We haven't generated a summary for this paper yet.