Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Analysis of Metric Graph Reconstruction (1305.1212v2)

Published 6 May 2013 in math.ST, cs.CG, and stat.TH

Abstract: A metric graph is a 1-dimensional stratified metric space consisting of vertices and edges or loops glued together. Metric graphs can be naturally used to represent and model data that take the form of noisy filamentary structures, such as street maps, neurons, networks of rivers and galaxies. We consider the statistical problem of reconstructing the topology of a metric graph embedded in RD from a random sample. We derive lower and upper bounds on the minimax risk for the noiseless case and tubular noise case. The upper bound is based on the reconstruction algorithm given in Aanjaneya et al. (2012).

Citations (14)

Summary

We haven't generated a summary for this paper yet.