Mixing of the Glauber dynamics for the ferromagnetic Potts model (1305.0776v2)
Abstract: We present several results on the mixing time of the Glauber dynamics for sampling from the Gibbs distribution in the ferromagnetic Potts model. At a fixed temperature and interaction strength, we study the interplay between the maximum degree ($\Delta$) of the underlying graph and the number of colours or spins ($q$) in determining whether the dynamics mixes rapidly or not. We find a lower bound $L$ on the number of colours such that Glauber dynamics is rapidly mixing if at least $L$ colours are used. We give a closely-matching upper bound $U$ on the number of colours such that with probability that tends to 1, the Glauber dynamics mixes slowly on random $\Delta$-regular graphs when at most $U$ colours are used. We show that our bounds can be improved if we restrict attention to certain types of graphs of maximum degree $\Delta$, e.g. toroidal grids for $\Delta = 4$.