Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensional Differences Between Faces of the Cones of Nonnegative Polynomials and Sums of Squares (1305.0642v1)

Published 3 May 2013 in math.AG and math.AC

Abstract: We study dimensions of the faces of the cone of nonnegative polynomials and the cone of sums of squares; we show that there are dimensional differences between corresponding faces of these cones. These dimensional gaps occur in all cases where there exist nonnegative polynomials that are not sums of squares. The gaps occur generically, they are not the product of selecting special faces of the cones. For ternary forms and quaternary quartics, we completely characterize when these differences are observed. Moreover, we provide an explicit description for these differences in the two smallest cases, in which the cone of nonnegative polynomials and the cone of sums of squares are different. Our results follow from more general results concerning the relationship between the second ordinary power and the second symbolic power of the vanishing ideal of points in projective space.

Summary

We haven't generated a summary for this paper yet.