2000 character limit reached
Deriving Matrix Concentration Inequalities from Kernel Couplings (1305.0612v1)
Published 3 May 2013 in math.PR and math.FA
Abstract: This paper derives exponential tail bounds and polynomial moment inequalities for the spectral norm deviation of a random matrix from its mean value. The argument depends on a matrix extension of Stein's method of exchangeable pairs for concentration of measure, as introduced by Chatterjee. Recent work of Mackey et al. uses these techniques to analyze random matrices with additive structure, while the enhancements in this paper cover a wider class of matrix-valued random elements. In particular, these ideas lead to a bounded differences inequality that applies to random matrices constructed from weakly dependent random variables. The proofs require novel trace inequalities that may be of independent interest.