Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MATAWS: A Multimodal Approach for Automatic WS Semantic Annotation (1305.0194v1)

Published 1 May 2013 in cs.SE, cs.CL, and cs.IR

Abstract: Many recent works aim at developing methods and tools for the processing of semantic Web services. In order to be properly tested, these tools must be applied to an appropriate benchmark, taking the form of a collection of semantic WS descriptions. However, all of the existing publicly available collections are limited by their size or their realism (use of randomly generated or resampled descriptions). Larger and realistic syntactic (WSDL) collections exist, but their semantic annotation requires a certain level of automation, due to the number of operations to be processed. In this article, we propose a fully automatic method to semantically annotate such large WS collections. Our approach is multimodal, in the sense it takes advantage of the latent semantics present not only in the parameter names, but also in the type names and structures. Concept-to-word association is performed by using Sigma, a mapping of WordNet to the SUMO ontology. After having described in details our annotation method, we apply it to the larger collection of real-world syntactic WS descriptions we could find, and assess its efficiency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.