Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractal-Based Detection of Microcalcification Clusters in Digital Mammograms (1304.8092v1)

Published 30 Apr 2013 in cs.CV

Abstract: In this paper, a novel method for edge detection of microcalcification clusters in mammogram images is presented using the concept of Fractal Dimension and Hurst co-efficient that enables to locate the microcalcifications in the mammograms. This technique detects the edges accurately than the ones obtained by the conventional Sobel method. Generally, Sobel method detects the edges of the regions/objects in an image using the Fudge factor that assumes its value as 0.5, by default. In this proposed technique, the Fudge factor is suitably replaced with Hurst Co-efficient, which is computed as the difference of Fractal dimension and the topological dimension of a given input image. These two dimensions are image-dependent, and hence the respective Hurst co-efficient too varies with respect to images. Hence, the image-dependent Hurst co-efficient based Sobel method is proved to produce better results than the Fudge factor based Sobel method. The results of the proposed method substantiate the merit of the proposed technique.

Citations (9)

Summary

We haven't generated a summary for this paper yet.