Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Fiducial Inference for Ultrahigh Dimensional Regression (1304.7847v1)

Published 30 Apr 2013 in stat.ME

Abstract: In recent years the ultrahigh dimensional linear regression problem has attracted enormous attentions from the research community. Under the sparsity assumption most of the published work is devoted to the selection and estimation of the significant predictor variables. This paper studies a different but fundamentally important aspect of this problem: uncertainty quantification for parameter estimates and model choices. To be more specific, this paper proposes methods for deriving a probability density function on the set of all possible models, and also for constructing confidence intervals for the corresponding parameters. These proposed methods are developed using the generalized fiducial methodology, which is a variant of Fisher's controversial fiducial idea. Theoretical properties of the proposed methods are studied, and in particular it is shown that statistical inference based on the proposed methods will have exact asymptotic frequentist property. In terms of empirical performances, the proposed methods are tested by simulation experiments and an application to a real data set. Lastly this work can also be seen as an interesting and successful application of Fisher's fiducial idea to an important and contemporary problem. To the best of the authors' knowledge, this is the first time that the fiducial idea is being applied to a so-called "large p small n" problem.

Summary

We haven't generated a summary for this paper yet.