Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Framization of the Temperley-Lieb Algebra (1304.7440v3)

Published 28 Apr 2013 in math.QA and math.GT

Abstract: We propose a framization of the Temperley-Lieb algebra. The framization is a procedure that can briefly be described as the adding of framing to a known knot algebra in a way that is both algebraically consistent and topologically meaningful. Our framization of the Temperley-Lieb algebra is defined as a quotient of the Yokonuma-Hecke algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra. Using this we construct 1-variable invariants for classical knots and links, which, as we show, are not topologically equivalent to the Jones polynomial.

Summary

We haven't generated a summary for this paper yet.