Framization of the Temperley-Lieb Algebra
Abstract: We propose a framization of the Temperley-Lieb algebra. The framization is a procedure that can briefly be described as the adding of framing to a known knot algebra in a way that is both algebraically consistent and topologically meaningful. Our framization of the Temperley-Lieb algebra is defined as a quotient of the Yokonuma-Hecke algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra. Using this we construct 1-variable invariants for classical knots and links, which, as we show, are not topologically equivalent to the Jones polynomial.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.