Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improved Approximation Algorithms for the Min-Max Selecting Items Problem

Published 27 Apr 2013 in cs.DS | (1304.7403v1)

Abstract: We give a simple deterministic $O(\log K / \log\log K)$ approximation algorithm for the Min-Max Selecting Items problem, where $K$ is the number of scenarios. While our main goal is simplicity, this result also improves over the previous best approximation ratio of $O(\log K)$ due to Kasperski, Kurpisz, and Zieli\'nski (Information Processing Letters (2013)). Despite using the method of pessimistic estimators, the algorithm has a polynomial runtime also in the RAM model of computation. We also show that the LP formulation for this problem by Kasperski and Zieli\'nski (Annals of Operations Research (2009)), which is the basis for the previous work and ours, has an integrality gap of at least $\Omega(\log K / \log\log K)$.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.