Papers
Topics
Authors
Recent
Search
2000 character limit reached

Skewness and kurtosis unbiased by Gaussian uncertainties

Published 24 Apr 2013 in astro-ph.IM, physics.data-an, and stat.ME | (1304.6715v3)

Abstract: Noise is an unavoidable part of most measurements which can hinder a correct interpretation of the data. Uncertainties propagate in the data analysis and can lead to biased results even in basic descriptive statistics such as the central moments and cumulants. Expressions of noise-unbiased estimates of central moments and cumulants up to the fourth order are presented under the assumption of independent Gaussian uncertainties, for weighted and unweighted statistics. These results are expected to be relevant for applications of the skewness and kurtosis estimators such as outlier detections, normality tests and in automated classification procedures. The comparison of estimators corrected and not corrected for noise biases is illustrated with simulations as a function of signal-to-noise ratio, employing different sample sizes and weighting schemes.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.