Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust 1-bit Compressive Sensing via Gradient Support Pursuit (1304.6627v1)

Published 24 Apr 2013 in cs.IT, math.IT, math.OC, math.ST, and stat.TH

Abstract: This paper studies a formulation of 1-bit Compressed Sensing (CS) problem based on the maximum likelihood estimation framework. In order to solve the problem we apply the recently proposed Gradient Support Pursuit algorithm, with a minor modification. Assuming the proposed objective function has a Stable Restricted Hessian, the algorithm is shown to accurately solve the 1-bit CS problem. Furthermore, the algorithm is compared to the state-of-the-art 1-bit CS algorithms through numerical simulations. The results suggest that the proposed method is robust to noise and at mid to low input SNR regime it achieves the best reconstruction SNR vs. execution time trade-off.

Citations (20)

Summary

We haven't generated a summary for this paper yet.