Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification of simple $W_n$-modules with finite-dimensional weight spaces (1304.5458v1)

Published 19 Apr 2013 in math.RT

Abstract: We classify all simple $W_n$-modules with finite-dimensional weight spaces. Every such module is either of a highest weight type or is a quotient of a module of tensor fields on a torus, which was conjectured by Eswara Rao. This generalizes the classical result of Mathieu on simple weight modules for the Virasoro algebra. In our proof of the classification we construct a functor from the category of cuspidal $W_n$-modules to the category of $W_n$-modules with a compatible action of the algebra of functions on a torus. We also present a new identity for certain quadratic elements in the universal enveloping algebra of $W_1$, which provides important information about cuspidal $W_1$-modules.

Summary

We haven't generated a summary for this paper yet.