Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analytic Expressions for Stochastic Distances Between Relaxed Complex Wishart Distributions (1304.5417v1)

Published 19 Apr 2013 in stat.ML

Abstract: The scaled complex Wishart distribution is a widely used model for multilook full polarimetric SAR data whose adequacy has been attested in the literature. Classification, segmentation, and image analysis techniques which depend on this model have been devised, and many of them employ some type of dissimilarity measure. In this paper we derive analytic expressions for four stochastic distances between relaxed scaled complex Wishart distributions in their most general form and in important particular cases. Using these distances, inequalities are obtained which lead to new ways of deriving the Bartlett and revised Wishart distances. The expressiveness of the four analytic distances is assessed with respect to the variation of parameters. Such distances are then used for deriving new tests statistics, which are proved to have asymptotic chi-square distribution. Adopting the test size as a comparison criterion, a sensitivity study is performed by means of Monte Carlo experiments suggesting that the Bhattacharyya statistic outperforms all the others. The power of the tests is also assessed. Applications to actual data illustrate the discrimination and homogeneity identification capabilities of these distances.

Citations (85)

Summary

We haven't generated a summary for this paper yet.