Papers
Topics
Authors
Recent
Search
2000 character limit reached

Trait substitution trees on two time scales analysis

Published 16 Apr 2013 in math.PR | (1304.4640v1)

Abstract: In this paper we consider two continuous-mass population models as analogues of logistic branching random walks, one is supported on a finite trait space and the other one is supported on an infinite trait space. For the first model with nearest-neighbor competition and migration, we justify a well-described evolutionary path to the short-term equilibrium on a slow migration time scale. For the second one with an additional evolutionary mechanism-mutation, a jump process-trait substitution tree model is established under a combination of rare mutation and slow migration limits. The transition rule of the tree highly depends on the relabelled trait sequence determined by the fitness landscape. The novelty of our model is that each trait, which may nearly die out on the migration time scale, has a chance to recover and further to be stabilized on the mutation time scale because of a change in the fitness landscape due to a newly entering mutant.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.