Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Computation of Mean Truncated Hitting Times on Very Large Graphs (1304.4371v1)

Published 16 Apr 2013 in cs.DS and cs.AI

Abstract: Previous work has shown the effectiveness of random walk hitting times as a measure of dissimilarity in a variety of graph-based learning problems such as collaborative filtering, query suggestion or finding paraphrases. However, application of hitting times has been limited to small datasets because of computational restrictions. This paper develops a new approximation algorithm with which hitting times can be computed on very large, disk-resident graphs, making their application possible to problems which were previously out of reach. This will potentially benefit a range of large-scale problems.

Summary

We haven't generated a summary for this paper yet.