Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

q-Deformed Clifford algebra and level zero fundamental representations of quantum affine algebras (1304.3976v3)

Published 15 Apr 2013 in math.QA

Abstract: We give a realization of the level zero fundamental weight representation $W(\varpi_k)$ of the quantum affine algebra $U_q'(\mf{g})$, when $\mf{g}$ has a maximal parabolic subalgebra of type $C_n$. We define a semisimple $U'q({\mf g})$-module structure on $\E{\otimes 2}$ in terms of q-deformed Clifford generators, where $\E$ is the exterior algebra generated by a dual natural representation $V$ of $U_q(\mf{sl}{n})$. We show that each $W(\varpi_k)$ appears as an irreducible summand (not necessarily multiplicity free) in $\E{\otimes 2}$. As a byproduct, we obtain a simple description of the affine crystal structure of $W(\varpi_k)$ in terms of $n\times 2$ binary matrices and their $(\mf{sl}_n,\mf{sl}_2)$-bicrystal structure.

Summary

We haven't generated a summary for this paper yet.