Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix-valued Monge-Kantorovich Optimal Mass Transport (1304.3931v1)

Published 14 Apr 2013 in cs.SY, math.DS, math.FA, and math.OC

Abstract: We formulate an optimal transport problem for matrix-valued density functions. This is pertinent in the spectral analysis of multivariable time-series. The "mass" represents energy at various frequencies whereas, in addition to a usual transportation cost across frequencies, a cost of rotation is also taken into account. We show that it is natural to seek the transportation plan in the tensor product of the spaces for the two matrix-valued marginals. In contrast to the classical Monge-Kantorovich setting, the transportation plan is no longer supported on a thin zero-measure set.

Citations (39)

Summary

We haven't generated a summary for this paper yet.