Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Factors, Empiricism and the Dempster-Shafer Theory of Evidence (1304.3437v1)

Published 27 Mar 2013 in cs.AI

Abstract: The issue of confidence factors in Knowledge Based Systems has become increasingly important and Dempster-Shafer (DS) theory has become increasingly popular as a basis for these factors. This paper discusses the need for an empirical lnterpretatlon of any theory of confidence factors applied to Knowledge Based Systems and describes an empirical lnterpretatlon of DS theory suggesting that the theory has been extensively misinterpreted. For the essentially syntactic DS theory, a model is developed based on sample spaces, the traditional semantic model of probability theory. This model is used to show that, if belief functions are based on reasonably accurate sampling or observation of a sample space, then the beliefs and upper probabilities as computed according to DS theory cannot be interpreted as frequency ratios. Since many proposed applications of DS theory use belief functions in situations with statistically derived evidence (Wesley [1]) and seem to appeal to statistical intuition to provide an lnterpretatlon of the results as has Garvey [2], it may be argued that DS theory has often been misapplied.

Citations (46)

Summary

We haven't generated a summary for this paper yet.