Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compiling Fuzzy Logic Control Rules to Hardware Implementations (1304.2752v1)

Published 27 Mar 2013 in cs.AI

Abstract: A major aspect of human reasoning involves the use of approximations. Particularly in situations where the decision-making process is under stringent time constraints, decisions are based largely on approximate, qualitative assessments of the situations. Our work is concerned with the application of approximate reasoning to real-time control. Because of the stringent processing speed requirements in such applications, hardware implementations of fuzzy logic inferencing are being pursued. We describe a programming environment for translating fuzzy control rules into hardware realizations. Two methods of hardware realizations are possible. The First is based on a special purpose chip for fuzzy inferencing. The second is based on a simple memory chip. The ability to directly translate a set of decision rules into hardware implementations is expected to make fuzzy control an increasingly practical approach to the control of complex systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.