Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Practical Issues in Constructing a Bayes' Belief Network (1304.2725v1)

Published 27 Mar 2013 in cs.AI

Abstract: Bayes belief networks and influence diagrams are tools for constructing coherent probabilistic representations of uncertain knowledge. The process of constructing such a network to represent an expert's knowledge is used to illustrate a variety of techniques which can facilitate the process of structuring and quantifying uncertain relationships. These include some generalizations of the "noisy OR gate" concept. Sensitivity analysis of generic elements of Bayes' networks provides insight into when rough probability assessments are sufficient and when greater precision may be important.

Citations (104)

Summary

We haven't generated a summary for this paper yet.