Papers
Topics
Authors
Recent
2000 character limit reached

The Bogomolov multiplier of rigid finite groups

Published 9 Apr 2013 in math.GR and math.AG | (1304.2691v1)

Abstract: The Bogomolov multiplier of a finite group $G$ is defined as the subgroup of the Schur multiplier consisting of the cohomology classes vanishing after restriction to all abelian subgroups of $G$. This invariant of $G$ plays an important role in birational geometry of quotient spaces $V/G$. We show that in many cases the vanishing of the Bogomolov multiplier is guaranteed by the rigidity of $G$ in the sense that it has no outer class-preserving automorphisms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.