Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completeness and interpolation for intuitionistic infinitary predicate logic, in connection to finitizing the class of representable Heyting polyadic algebras (1304.1538v1)

Published 4 Apr 2013 in math.LO

Abstract: We study different representation theorems for various reducts of Heyting polyadic algebras. Superamalgamation is proved for several (natural reducts) and our results are compared to the finitizability problem in classical algebraic logic dealing with cylindric and polyadic (Boolean algebras). We also prove several new neat embedding theorems, and obtain that the class of representable algebras based on (a generalized) Kripke semantics coincide with the class of algebras having the neat embedding property, that is those algebras that are subneat reducts of algebras having $\omega$ extra dimensions.

Summary

We haven't generated a summary for this paper yet.