Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II (1304.1417v1)
Abstract: In this paper we first establish an optimal Sobolev type inequality for hypersurfaces in $\Hn$(see Theorem \ref{mainthm1}). As an application we obtain hyperbolic Alexandrov-Fenchel inequalities for curvature integrals and quermassintegrals. Precisely, we prove a following geometric inequality in the hyperbolic space $\Hn$, which is a hyperbolic Alexandrov-Fenchel inequality, \begin{equation*} \begin{array}{rcl} \ds \int_\Sigma \s_{2k}\ge \ds\vs C_{n-1}{2k}\omega_{n-1}\left{\left(\frac{|\Sigma|}{\omega_{n-1}} \right)\frac 1k + \left(\frac{|\Sigma|}{\omega_{n-1}} \right){\frac 1k\frac {n-1-2k}{n-1}} \right}k, \end{array} \end{equation*} provided that $\Sigma$ is a horospherical convex, where $2k\leq n-1$. Equality holds if and only if $\Sigma$ is a geodesic sphere in $\Hn$. Here $\sigma_{j}=\s_{j}(\kappa)$ is the $j$-th mean curvature and $\kappa=(\kappa_1,\kappa_2,\cdots, \kappa_{n-1})$ is the set of the principal curvatures of $\Sigma$. Also, an optimal inequality for quermassintegrals in $\Hn$ is as following: $$ W_{2k+1}(\Omega)\geq\frac {\omega_{n-1}}{n}\sum_{i=0}k\frac{n-1-2k}{n-1-2k+2i}\,C_ki\bigg(\frac{nW_1(\Omega)}{\omega_{n-1}}\bigg){\frac{n-1-2k+2i}{n-1}}, $$ provided that $\Omega\subset\Hn$ is a domain with $\Sigma=\partial\Omega$ horospherical convex, where $2k\leq n-1$. Equality holds if and only if $\Sigma$ is a geodesic sphere in $\Hn$. Here $W_r(\Omega)$ is quermassintegrals in integral geometry.