Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Possibility as Similarity: the Semantics of Fuzzy Logic (1304.1115v1)

Published 27 Mar 2013 in cs.AI

Abstract: This paper addresses fundamental issues on the nature of the concepts and structures of fuzzy logic, focusing, in particular, on the conceptual and functional differences that exist between probabilistic and possibilistic approaches. A semantic model provides the basic framework to define possibilistic structures and concepts by means of a function that quantifies proximity, closeness, or resemblance between pairs of possible worlds. The resulting model is a natural extension, based on multiple conceivability relations, of the modal logic concepts of necessity and possibility. By contrast, chance-oriented probabilistic concepts and structures rely on measures of set extension that quantify the proportion of possible worlds where a proposition is true. Resemblance between possible worlds is quantified by a generalized similarity relation: a function that assigns a number between O and 1 to every pair of possible worlds. Using this similarity relation, which is a form of numerical complement of a classic metric or distance, it is possible to define and interpret the major constructs and methods of fuzzy logic: conditional and unconditioned possibility and necessity distributions and the generalized modus ponens of Zadeh.

Citations (21)

Summary

We haven't generated a summary for this paper yet.