Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Qualitative Propagation and Scenario-based Explanation of Probabilistic Reasoning (1304.1082v1)

Published 27 Mar 2013 in cs.AI

Abstract: Comprehensible explanations of probabilistic reasoning are a prerequisite for wider acceptance of Bayesian methods in expert systems and decision support systems. A study of human reasoning under uncertainty suggests two different strategies for explaining probabilistic reasoning: The first, qualitative belief propagation, traces the qualitative effect of evidence through a belief network from one variable to the next. This propagation algorithm is an alternative to the graph reduction algorithms of WeLLMan (1988) for inference in qualitative probabilistic networks. It is based on a qualitative analysis of intercausal reasoning, which is a generalization of Pearl's "explaining away", and an alternative to WeLLMan's definition of qualitative synergy. The other, Scenario-based reasoning, involves the generation of alternative causal "stories" accounting for the evidence. Comparing a few of the most probable scenarios provides an approximate way to explain the results of probabilistic reasoning. Both schemes employ causal as well as probabilistic knowledge. Probabilities may be presented as phrases and/or numbers. Users can control the style, abstraction and completeness of explanations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.