Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representations of rational Cherednik algebras of G(m,r,n) in positive characteristic (1304.0856v2)

Published 3 Apr 2013 in math.RT and math.AC

Abstract: We study lowest-weight irreducible representations of rational Cherednik algebras attached to the complex reflection groups G(m,r,n) in characteristic p. Our approach is mostly from the perspective of commutative algebra. By studying the kernel of the contravariant bilinear form on Verma modules, we obtain formulas for Hilbert series of irreducible representations in a number of cases, and present conjectures in other cases. We observe that the form of the Hilbert series of the irreducible representations and the generators of the kernel tend to be determined by the value of n modulo p, and are related to special classes of subspace arrangements. Perhaps the most novel (conjectural) discovery from the commutative algebra perspective is that the generators of the kernel can be given the structure of a "matrix regular sequence" in some instances, which we prove in some small cases.

Summary

We haven't generated a summary for this paper yet.