Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance of the Metropolis algorithm on a disordered tree: The Einstein relation (1304.0552v3)

Published 2 Apr 2013 in math.PR, cond-mat.dis-nn, and cs.DS

Abstract: Consider a $d$-ary rooted tree ($d\geq3$) where each edge $e$ is assigned an i.i.d. (bounded) random variable $X(e)$ of negative mean. Assign to each vertex $v$ the sum $S(v)$ of $X(e)$ over all edges connecting $v$ to the root, and assume that the maximum $S_n*$ of $S(v)$ over all vertices $v$ at distance $n$ from the root tends to infinity (necessarily, linearly) as $n$ tends to infinity. We analyze the Metropolis algorithm on the tree and show that under these assumptions there always exists a temperature $1/\beta$ of the algorithm so that it achieves a linear (positive) growth rate in linear time. This confirms a conjecture of Aldous [Algorithmica 22 (1998) 388-412]. The proof is obtained by establishing an Einstein relation for the Metropolis algorithm on the tree.

Citations (3)

Summary

We haven't generated a summary for this paper yet.