Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phase Transition and Network Structure in Realistic SAT Problems (1304.0145v1)

Published 30 Mar 2013 in cs.AI

Abstract: A fundamental question in Computer Science is understanding when a specific class of problems go from being computationally easy to hard. Because of its generality and applications, the problem of Boolean Satisfiability (aka SAT) is often used as a vehicle for investigating this question. A signal result from these studies is that the hardness of SAT problems exhibits a dramatic easy-to-hard phase transition with respect to the problem constrainedness. Past studies have however focused mostly on SAT instances generated using uniform random distributions, where all constraints are independently generated, and the problem variables are all considered of equal importance. These assumptions are unfortunately not satisfied by most real problems. Our project aims for a deeper understanding of hardness of SAT problems that arise in practice. We study two key questions: (i) How does easy-to-hard transition change with more realistic distributions that capture neighborhood sensitivity and rich-get-richer aspects of real problems and (ii) Can these changes be explained in terms of the network properties (such as node centrality and small-worldness) of the clausal networks of the SAT problems. Our results, based on extensive empirical studies and network analyses, provide important structural and computational insights into realistic SAT problems. Our extensive empirical studies show that SAT instances from realistic distributions do exhibit phase transition, but the transition occurs sooner (at lower values of constrainedness) than the instances from uniform random distribution. We show that this behavior can be explained in terms of their clausal network properties such as eigenvector centrality and small-worldness (measured indirectly in terms of the clustering coefficients and average node distance).

Citations (5)

Summary

We haven't generated a summary for this paper yet.