Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wang's B machines are efficiently universal, as is Hasenjaeger's small universal electromechanical toy (1304.0053v2)

Published 30 Mar 2013 in cs.CC and cs.DS

Abstract: In the 1960's Gisbert Hasenjaeger built Turing Machines from electromechanical relays and uniselectors. Recently, Glaschick reverse engineered the program of one of these machines and found that it is a universal Turing machine. In fact, its program uses only four states and two symbols, making it a very small universal Turing machine. (The machine has three tapes and a number of other features that are important to keep in mind when comparing it to other small universal machines.) Hasenjaeger's machine simulates Hao Wang's B machines, which were proved universal by Wang. Unfortunately, Wang's original simulation algorithm suffers from an exponential slowdown when simulating Turing machines. Hence, via this simulation, Hasenjaeger's machine also has an exponential slowdown when simulating Turing machines. In this work, we give a new efficient simulation algorithm for Wang's B machines by showing that they simulate Turing machines with only a polynomial slowdown. As a second result, we find that Hasenjaeger's machine also efficiently simulates Turing machines in polynomial time. Thus, Hasenjaeger's machine is both small and fast. In another application of our result, we show that Hooper's small universal Turing machine simulates Turing machines in polynomial time, an exponential improvement.

Citations (3)

Summary

We haven't generated a summary for this paper yet.