The size of Julia sets of quasiregular maps
Abstract: Sun Daochun and Yang Lo have shown that many results of the Fatou-Julia iteration theory of rational functions extend to quasiregular self-maps of the Riemann sphere for which the degree exceeds the dilatation. We show that in this context, in contrast to the case of rational functions, the Julia set may have Hausdorff dimension zero. On the other hand, we exhibit a gauge function depending on the degree and the dilatation such that the Hausdorff measure with respect to this gauge function is always positive, but may be finite.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.