Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The size of Julia sets of quasiregular maps (1303.7243v1)

Published 28 Mar 2013 in math.DS and math.CV

Abstract: Sun Daochun and Yang Lo have shown that many results of the Fatou-Julia iteration theory of rational functions extend to quasiregular self-maps of the Riemann sphere for which the degree exceeds the dilatation. We show that in this context, in contrast to the case of rational functions, the Julia set may have Hausdorff dimension zero. On the other hand, we exhibit a gauge function depending on the degree and the dilatation such that the Hausdorff measure with respect to this gauge function is always positive, but may be finite.

Summary

We haven't generated a summary for this paper yet.