Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic Probabilistic Inference with Continuous Variables (1303.5712v1)

Published 20 Mar 2013 in cs.AI

Abstract: Research on Symbolic Probabilistic Inference (SPI) [2, 3] has provided an algorithm for resolving general queries in Bayesian networks. SPI applies the concept of dependency directed backward search to probabilistic inference, and is incremental with respect to both queries and observations. Unlike traditional Bayesian network inferencing algorithms, SPI algorithm is goal directed, performing only those calculations that are required to respond to queries. Research to date on SPI applies to Bayesian networks with discrete-valued variables and does not address variables with continuous values. In this papers, we extend the SPI algorithm to handle Bayesian networks made up of continuous variables where the relationships between the variables are restricted to be ?linear gaussian?. We call this variation of the SPI algorithm, SPI Continuous (SPIC). SPIC modifies the three basic SPI operations: multiplication, summation, and substitution. However, SPIC retains the framework of the SPI algorithm, namely building the search tree and recursive query mechanism and therefore retains the goal-directed and incrementality features of SPI.

Citations (21)

Summary

We haven't generated a summary for this paper yet.