Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intuitions about Ordered Beliefs Leading to Probabilistic Models (1303.5431v1)

Published 13 Mar 2013 in cs.AI

Abstract: The general use of subjective probabilities to model belief has been justified using many axiomatic schemes. For example, ?consistent betting behavior' arguments are well-known. To those not already convinced of the unique fitness and generality of probability models, such justifications are often unconvincing. The present paper explores another rationale for probability models. ?Qualitative probability,' which is known to provide stringent constraints on belief representation schemes, is derived from five simple assumptions about relationships among beliefs. While counterparts of familiar rationality concepts such as transitivity, dominance, and consistency are used, the betting context is avoided. The gap between qualitative probability and probability proper can be bridged by any of several additional assumptions. The discussion here relies on results common in the recent AI literature, introducing a sixth simple assumption. The narrative emphasizes models based on unique complete orderings, but the rationale extends easily to motivate set-valued representations of partial orderings as well.

Citations (4)

Summary

We haven't generated a summary for this paper yet.