Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calculating Uncertainty Intervals From Conditional Convex Sets of Probabilities (1303.5418v1)

Published 13 Mar 2013 in cs.AI

Abstract: In Moral, Campos (1991) and Cano, Moral, Verdegay-Lopez (1991) a new method of conditioning convex sets of probabilities has been proposed. The result of it is a convex set of non-necessarily normalized probability distributions. The normalizing factor of each probability distribution is interpreted as the possibility assigned to it by the conditioning information. From this, it is deduced that the natural value for the conditional probability of an event is a possibility distribution. The aim of this paper is to study methods of transforming this possibility distribution into a probability (or uncertainty) interval. These methods will be based on the use of Sugeno and Choquet integrals. Their behaviour will be compared in basis to some selected examples.

Citations (28)

Summary

We haven't generated a summary for this paper yet.