Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower bounds for k-distance approximation (1303.5388v1)

Published 21 Mar 2013 in cs.CG

Abstract: Consider a set P of N random points on the unit sphere of dimension $d-1$, and the symmetrized set S = P union (-P). The halving polyhedron of S is defined as the convex hull of the set of centroids of N distinct points in S. We prove that after appropriate rescaling this halving polyhedron is Hausdorff close to the unit ball with high probability, as soon as the number of points grows like $Omega(d log(d))$. From this result, we deduce probabilistic lower bounds on the complexity of approximations of the distance to the empirical measure on the point set by distance-like functions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.