Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does query performance optimization lead to energy efficiency? A comparative analysis of energy efficiency of database operations under different workload scenarios (1303.4869v1)

Published 20 Mar 2013 in cs.DB

Abstract: With the continuous increase of online services as well as energy costs, energy consumption becomes a significant cost factor for the evaluation of data center operations. A significant contributor to that is the performance of database servers which are found to constitute the backbone of online services. From a software approach, while a set of novel data management technologies appear in the market e.g. key-value based or in-memory databases, classic relational database management systems (RDBMS) are still widely used. In addition from a hardware perspective, the majority of database servers is still using standard magnetic hard drives (HDDs) instead of solid state drives (SSDs) due to lower cost of storage per gigabyte, disregarding the performance boost that might be given due to high cost. In this study we focus on a software based assessment of the energy consumption of a database server by running three different and complete database workloads namely TCP-H, Star Schema Benchmark -SSB as well a modified benchmark we have derived for this study called W22. We profile the energy distribution among the ost important server components and by using different resource allocation we assess the energy consumption of a typical open source RDBMS (PostgreSQL) on a standard server in relation with its performance (measured by query time). Results confirm the well-known fact that even for complete workloads, optimization of the RDBMS results to lower energy consumption.

Citations (4)

Summary

We haven't generated a summary for this paper yet.